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The rapid growth of graph data in various domains has propelled the need for 
efficient distributed graph processing techniques in cloud computing 
environments. This paper presents a comprehensive review of distributed 
graph processing for graph analytics of massive size in the context of cloud 
computing. The paper begins by highlighting the challenges associated with 
distributed graph processing, including load balancing, communication 
overhead, scalability, and partitioning strategies. It provides an overview of 
existing frameworks and tools specifically designed for distributed graph 
processing in cloud environments. Furthermore, the review encompasses 
various techniques and algorithms employed in distributed graph processing. 
The paper also reviews recent research advancements in optimizing 
distributed graph processing in cloud computing. To provide practical 
insights, the paper presents a comparative analysis of representative large-
scale graph analytics applications implemented on different cloud computing 
platforms. Performance, scalability, and efficiency metrics are evaluated 
under varying workload sizes and graph characteristics. Overall, this 
comprehensive review paper serves as a highly prized asset for researchers 
and large-scale graph analytics professionals who are practitioners in the 
field. It provides a holistic understanding of the state-of-the-art distributed 
graph processing techniques in cloud computing and guides future research 
efforts towards more efficient and scalable graph processing in cloud 
environments. 
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A. Introduction 

Cloud computing is a web-based platform that allows for the utilization of 
software, data, and resources from any location on the Internet. The recent 
evolution from cloud computing to hosting and delivering internet applications is a 
modern example[1], [2], [3]. Big data analytics and visualization have become 
integral in response to the exponential growth of data from computers, social media, 
and mobile devices. This transformation is acknowledged in the literature on big 
data challenges and applications[4]. Visualization, the graphical representation of 
facts, is crucial for interpreting and gaining deeper insights from large datasets. 
Scholars emphasize the formal interpretation of data visualization as a necessity in 
assessing and extracting meaningful insights from complex data. The role of data 
visualization extends to facilitating the consolidation of diverse data points, 
enhancing comprehension of data relationships, enabling real-time problem 
discussion, and identifying key analysis focal points[5]. Distributed Graph 
Processing in Cloud Computing is a pivotal paradigm for analyzing complex 
relationships and patterns within massive datasets. In the era of big data, the large 
size of graphs, such as billions of edges, and the complexity of graph computing 
provide substantial obstacles to computer systems and architecture. graph analytics 
has become a significant method for comprehending the connections between 
diverse forms of data. This enables data analysts to extract key insights from the 
patterns, benefiting various real-world applications including fraud detection[6], 
Tasks related to the field of machine learning[7], signal processing[8], social media 
content processing [9] Natural Language Processing (NLP) [10], [11], large-scale 
graph visualizations[12] and many other increasing fields. 
Processing large graphs in a distributed manner is generally difficult because of 
their size and the inherent irregular structure of graph computations[13]. 
Enormous graphs may exceed the memory limit of a solo system; and even if they 
can be accommodated, the performance will be limited by the quantity of processor 
cores. Furthermore, real-world graphs often exhibit sparsity and are stored in 
compressed formats, which presents difficulties for traditional memory hierarchies. 
Graph algorithms sometimes suffer from poor locality as a result of random accesses 
when updating neighboring nodes, and they often require high memory bandwidth 
due to the little amount of computation performed between these random 
accesses[14]. The fundamental elements of a distributed system are illustrated in 
Figure 1. 
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Figure 1. Distributed system components[15] 

B. Background Theory 

Distributed graph processing in cloud computing refers to the study and 
manipulation of extensive graphs by distributing computational activities among 
numerous machines inside a cloud environment. This section presents a theoretical 
foundation on the fundamental principles and methodologies employed in 
distributed graph processing. 

Graph processing involves performing computations on graphs in order to 
uncover significant insights and patterns. Graphs are composed of vertices, also 
known as nodes, and edges, which reflect the links or connections between the 
vertices. Graph processing is able to be classified into two primary types: graph 
traversal and graph analytics. Graph traversal entails traveling the structure of a 
graph to uncover interactions and investigate associated components, whereas 
graph analytics concentrates on obtaining more advanced information from the 
graph, such as community detection, centrality analysis, and graph clustering[16]. 

Various methodologies have been devised to tackle the difficulties associated 
with distributed graph processing. The Bulk Synchronous Parallel (BSP) paradigm 
offers a conceptual foundation for creating algorithms that process graphs in a 
distributed manner. The computation is partitioned into supersteps, wherein each 
superstep comprises a calculation phase followed by a synchronization phase. The 
BSP approach facilitates fault tolerance, load balancing, and scalability in distributed 
graph processing by guaranteeing that all machines achieve synchronization points 
before advancing to the next superstep[17]. 
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Graph processing frameworks offer conceptual models and programming 
interfaces that streamline the creation of scalable graph algorithms. These 
frameworks manage the fundamental aspects of distributed computation, fault 
tolerance, and data partitioning. Notable graph processing frameworks include 
Apache Giraph, Apache Flink, and GraphX. These frameworks offer advanced 
programming interfaces for defining graph algorithms and automatically manage 
the distribution of computations across the cluster[18], [19]. 

Cloud computing technologies, such as Amazon Web Services (AWS), Google 
Cloud Platform (GCP), and Microsoft Azure, play a crucial role in enabling 
distributed graph processing. They offer the essential framework, flexible 
scalability, and resilient resources needed for handling extensive graphs. Cloud 
platforms provide cost-effective and scalable services such as virtual computers, 
storage systems, and data processing frameworks that enable distributed graph 
processing[20], [21]. 

C. Distributed Systems 
Nowadays, the amount of data to process is beyond of the capability to be processed 

on a multicore single system[22].  The internet and distributed systems are experiencing 

a growing redundancy. Typically, the combined servers contain approximately 4 

petabytes of data. The technologies intricately handle this vast amount of data in an 

effective manner. The data is stored in multiple distributed devices and can be accessed 

using parallel processing[23], [24], [25]. Distributed systems enable multiple clients to 

access a shared computing resource, facilitating resource sharing. Examples of distributed 

computing include air traffic control, online railway reservation systems, and internet 

banking[26]. Distributed systems are crucial in the current technological environment, 

enabling smooth communication and collaboration across interconnected devices and 

services[27]. Distributed systems are extensively employed in modern applications for 

many objectives. According to Van Steen [28], they play a crucial role in cloud computing 

by facilitating the efficient and scalable distribution of resources among several 

computers. Online education has been improved by the use of distributed computing, 

which has enhanced eLearning experiences and made better use of resources[29]. The 

essential components of a distributed system are shown in Figure 1. 

D. Graph Processing 

Graph processing has become essential in the current technological 
environment, with applications spanning various disciplines. The authors in [30] 
emphasizes that social networks utilize graph processing for the purpose of 
modeling and analysis. Extracting information from graphs, such as those found in 
social networks or other contexts, typically requires global processing, which can be 
accomplished using several techniques [31]. Graphs are widely used in computer 
science as models for many structures found in nature and created by humans, 
highlighting the extensive range of applications for graph theory[32]. Sakr 
highlights the importance of massive graph processing in data centers, which is in 
line with the widely accepted reference architecture, as addressed by the 
community. Future systems are expected to offer highly scalable solutions for graph 
processing, recognizing graphs as a fundamental abstraction in contemporary data 
pipelines[33]. 
 



  ISSN 2549-7286 (online) 

Indonesian Journal of Computer Science                  Vol. 13, No. 2, Ed. 2024 | page 1546 
  

E. Cloud Computing 
The theoretical implementation of cloud computing involves the integration of 

virtualization, service models, and deployment methods[34]. Cloud computing has 
become a fundamental aspect of contemporary technology, providing unparalleled 
adaptability and expandability[35], [36]. The discipline is characterized by its 
dynamic nature, as evidenced by recent advances. The projected significant changes 
in 2024, as described by in[37], highlight the way cloud computing is reforming 
company operations and IT strategy, emphasizing its crucial position in the digital 
future. The authors in[38], [39] examine pioneering themes, including the 
democratization of innovation through AI-as-a-service, environmentally friendly 
efforts, and the use of edge computing. These patterns highlight the continuous 
development of cloud computing, placing it at the forefront of technological 
progress. Cloud architecture refers to the integration of diverse technological 
elements that constitute a cloud system. Typically, this entails utilizing 
virtualization technology to consolidate several resources and distribute them 
across a network. The services provided by the cloud are controlled by the cloud 
operating system[40]. Figure 2 demonstrate the architecture of cloud computing. 

 

 
Figure 2. Cloud computing architecture[41] 

F. Large-Scale Graph 

The rapid growth of the Internet has led to a substantial increase in the quantity 
of electronic data. The act of categorizing these materials into coherent groups has 
become imperative. The vast amount of web pages across several domains poses a 
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challenge for consumers to efficiently navigate and locate pertinent 
information[42]. From that view point, Large-scale graph analysis has proven 
crucial in extracting relevant insights across several areas. Coimbra et al.[43] 
examine the prospects and difficulties linked to large-scale data-intensive 
computing for social network analysis, genomics, and security[44], [45], [46] 
applications. This highlights the adaptability of extensive graphs in tackling intricate 
problems and extracting significant patterns. The importance of large-scale graphs 
is apparent in the domain of big data. Sakr in[33] underscores the prevalent 
framework of data centers, emphasizing the alignment of numerous graph 
processing ecosystems with this configuration. This insight is essential for the 
ability of massive graph processing to handle large amounts of data and be used in 
different scenarios that require a lot of data. Majeed's[30] review of graph theory 
highlights its potential applicability in computer science, providing distinct 
solutions throughout the subject. The study[47] offers a crucial analysis of graph 
data science, specifically highlighting the significance of graph visualization and its 
contribution to the examination of various graph categories. The ongoing 
significance of large-scale graphs in data-processing pipelines, offering extremely 
scalable solutions for modern applications[33]. 
 

G. Challenges 

The task of processing graphs in a distributed environment inside a cloud 
computing has certain difficulties, as indicated by research investigations. The 
challenges include 
• Scalability: As graph sizes continue to grow, ensuring scalability in distributed 

graph processing becomes crucial. Algorithms and techniques should be 

designed to handle graphs with billions or even trillions of vertices and edges, 

while efficiently utilizing the available computing resources [14], [48]. 

• Load balancing: Balancing the computational workload across distributed 

nodes in a cloud environment is a challenge in distributed graph processing. 

Unequal distribution of graph data and computations can lead to performance 

bottlenecks and inefficient resource utilization[49]. 

• Partitioning strategies: Effectively partitioning a graph across distributed 

nodes is essential for load balancing and minimizing communication overhead. 

Choosing appropriate partitioning strategies based on graph properties, such 

as vertex connectivity and data locality, is a challenge in distributed graph 

processing[50]. 

• Fault tolerance: Distributed graph processing systems should be resilient to 

node failures or network disruptions. Ensuring fault tolerance and fault 

recovery mechanisms to handle failures and maintain the consistency of graph 

computations is a challenge in cloud-based graph processing[51]. 

• Irregular Memory Access Patterns[52]. 

• Network Overheads and Bottlenecks[53]. 

• Performance Optimization Issues [54]. 

• Efficiency and Programming Flexibility [55]. 
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• The Complexity in Distributed Visualization Algorithms [56]. 

 

H. Related works 

In their study, [57] the author presents a distributed and parallel technique 

utilizing the MapReduce architecture to identify 2-Edge Connected Components (2-

ECCs) in extensive graphs. The paper emphasizes the constraints of current single-

node algorithms for graph analysis, which are inadequate for handling enormous 

graphs including billions of edges and vertices. The BiECCA algorithm tackles this 

difficulty by using the parallel and distributed capabilities of MapReduce, facilitating 

accelerated processing of large-scale graphs and facilitating the handling of stream 

data. The paper's contributions encompass the design and architecture of the 

proposed algorithm, the implementation of five distinct MapReduce tasks in a 

cascaded manner, and a comprehensive analysis of the algorithm's temporal 

complexity. The findings and assessments are offered in relation to the quantity of 

vertices and edges in comparison to the duration required for locating 2-ECCs. 

Furthermore, the study proposes innovative concepts for expanding upon the 

research. 

The paper titled "Outsourced Analysis of Encrypted Graphs in the Cloud with 

Privacy Protection" addresses the challenge of securely analyzing large graphs in the 

cloud while maintaining privacy [58]. The authors propose cryptographic 

techniques for protecting the privacy of outsourced graph data and present two 

encryption algorithms: additional substance homomorphic encryption (ASHE) and 

some degree homomorphic encryption (SDHE). The primary aim of the study is to 

develop security-preserving methods for essential graph analysis tasks, specifically 

extraterrestrial examination of graphs outsourced to the cloud server. The authors 

focus on addressing the accountability and protection concerns associated with 

cloud-based graph storage and analysis. The paper highlights the importance of 

cloud computing in handling extensive graph data due to its processing capacity and 

cost-saving benefits. The results suggest that SDHE-based strategies perform well in 

reducing computing time, while ASHE-based methods are more efficient in reducing 

storage costs. 

The study [59] introduces the concept of Graph Processing-as-a-Service 

(GPaaS) for large-scale graph processing in cloud computing environments. The aim 

of the paper is to develop a graph processing framework that takes into account 

quality of service (QoS) requirements and efficiently provisions resources to 

minimize monetary costs and execution time. The GPaaS framework considers 

service level agreements (SLAs) and QoS requirements to provision the appropriate 

combination of resources. The authors emphasize the importance of considering 

monetary costs and the heterogeneity of cloud resources in graph processing. They 

also address challenges specific to cloud environments, such as limited resources, 

time limitations, and dynamic network metrics. 
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In a study conducted by [60] This tackles the problem of communication 

bottleneck in distributed graph processing systems, which occurs when a significant 

amount of messages are exchanged between servers during calculations. The 

objective is to present a coded computing framework that utilizes computation 

redundancy to decrease the amount of communication required in the processing of 

large-scale graphs. The authors propose a new coding method that adds structured 

redundancy during the calculation phase. This allows for coded multicasting 

possibilities during message exchange and leads to a significant improvement in 

performance. The proposed framework expands on the graph-based MapReduce 

technique and presents a mathematical model for decomposing graph computation 

jobs in MapReduce. The calculation is partitioned into distinct Map and Reduce 

steps. During the Map phase, every server calculates intermediary values for the 

vertices within its assigned subgraph. During the Shuffle phase, servers share the 

intermediate values that are needed to execute the Reduce jobs. During the Reduce 

phase, each server performs the designated computations utilizing local and 

received intermediate data. The authors conduct actual experiments where they 

apply the PageRank algorithm on simulated and real-world datasets using Amazon 

EC2. The results exhibit substantial advancements, showcasing an improvement of 
up to 50.8% when compared to the usual application of PageRank. 

The authors in [61] introduces the concept of edge computing, an extension 

of cloud computing, which aims to provide low-latency computing capabilities to 

users by deploying edge servers at base stations. The paper presents two 

approaches to tackle the CEDC problem. First, an optimal approach Constrained 

Edge Data Caching (CEDC) called CEDC-IP is introduced, which utilizes Integer 

Programming techniques to solve the problem exactly. Second, an approximation 

algorithm named CEDC-A is proposed to efficiently find approximate solutions for 

large-scale CEDC problems. The approximation ratio of CEDC-A is also proven. The 

results indicate that both CEDC-IP and CEDC-A beat the other approaches in terms 

of benefit per cache cost and serviced request ratio per cache cost. 

As processing large graphs in the cloud environment is a challenging process. 

In a study [62] that proposed framework incorporates a network performance-

aware partitioning the graph method. To capture the roughness of the network 

bandwidth, the machines selected for graph processing are modeled as a complete 

undirected graph. The framework recursively partitions both the data graph and the 

machine graph, ensuring that the number of cross-partition edges aligns with the 

aggregated bandwidth among machine graph partitions. Hierarchical combination 

techniques are employed to exploit data locality and improve network performance. 

The authors developed a system prototype called Surfer based on the Pregel graph 

processing engine. Experimental evaluations were conducted using a real-world 

social network and synthetic graphs exceeding 100GB each. The results on a local 

cluster demonstrated that the proposed partitioning scheme improved partitioning 

performance by 39-55% and graph processing by 6-71% under different network 

topologies. The optimizations reduced network traffic by 30-95% and total 
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execution time by 30-85%. Furthermore, experiments on Amazon EC2 showed an 
average reduction of 49% in total execution time. 

The paper [63] addresses the challenges of scaling Graph Neural Networks 

(GNNs) for large real-world graphs in a distributed setting. the scale of real-world 

graphs, often consisting of billions of nodes and edges, poses challenges for model 

training. The aim of the paper is to address the scalability challenges in training 

GNNs on large graphs in a distributed fashion. Existing frameworks for GNN training 

are limited to single machine multi-GPU setups and smaller graph sizes. The paper 

proposes P3 as a solution to enable efficient distributed training of GNNs on large 

input graphs. P3 aims to reduce network communication inefficiencies, utilize GPUs 

effectively, and outperform existing state-of-the-art distributed GNN frameworks. 

Trinity, is a distributed graph engine that is introduced by [64]designed to 

address the challenges of large graph computation. Graph algorithms require 

random data access, which is not efficiently provided by disk technology. Memory-

based methods are constrained by their lack of scalability. Trinity's objective is to 

enhance memory management and network connection in order to facilitate rapid 

graph exploration and effective graph parallel computing. Additionally, it offers a 

specialized specification language called TSL, which simplifies the maintenance and 

computation of graphs. Trinity's objective is to offer a versatile graph engine that 

facilitates both real-time query processing and offline graph analytics. It specifically 

targets the challenges of graph computation, such as the high ratio of data access to 

computation and the need for random data access. Trinity employs a distributed 

memory storage technology that enables globally accessible distributed memory for 

performing large-scale graph computations. It utilizes enhanced memory 

management and network connection to optimize performance. The system 

employs a graph parallel computing methodology and enhances access patterns for 

both online and offline computation. Experiments carried out on Trinity showcase 

its ability to perform well in both quick graph searches and efficient graph analysis 

on large-scale graphs with billions of nodes. Trinity has effectively been 

implemented in practical scenarios, including knowledge bases, knowledge graphs, 

and social networks. The report conducts a comparative analysis of Trinity in 

relation to other prominent graph systems, emphasizing its superior qualities and 

benefits. Current systems often prioritize either online transaction processing 

(OLTP) or offline analytics with high latency and high throughput. However, Trinity 

is designed to effectively handle both scenarios by utilizing scalable memory-based 
computation. 

ShenTu is a graph processing framework that is designed general-purpose 

that is introduced by [65] and can effectively handle the challenges posed by large-

scale graphs, such as the imbalanced load, lack of locality, and irregularity in access. 

ShenTu incorporates four key innovations to achieve its extraordinary performance 

and the ability to scale. First, it utilizes hardware specialization to select the best 

computational element and memory for individually task. Furthermore, super node 
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routing adjusts global communication to the specific structure of the machine's 

topology. Third, on-chip sorting maps local message to manycore processors. Finally, 

degree-aware messaging selects the most suitable communication scheme based on 

vertex properties, such as degree. ShenTu is capable of efficiently dealing with a 

graph with 70 trillion edges and analyzing a 12 trillion-edge Internet graph for spam 
detection in a matter of seconds. 

There are many challenges faced in graph processing, which involves 

understanding relationships in large datasets. Conventional architectures suffer 

from poor locality, high memory bandwidth requirements, and energy consumption. 

To overcome these challenges, the study [66]proposes a novel approach that 

leverages ReRAM (Resistive Random Access Memory) as a hardware building block 

for graph processing acceleration. The goal of the paper is to introduce GRAPHR, as 

the primary accelerator of graph processing that is ReRAM-based. The system 

adheres to the concept of near-data processing and aims to perform highly efficient 

parallel analog operations with minimal hardware and energy requirements. 

GRAPHR consists of two main components: memory ReRAM and a graph engine 

(GE). The core graph computations are performed using ReRAM crossbars, which 

enable efficient sparse matrix-vector multiplication (SpMV). This approach allows 

for a higher computation-to-data movement ratio, increased parallelism, and 

reduced energy waste due to sparsity. The authors demonstrate that ReRAM-based 

computation can be utilized in a broad variety of contexts of graph algorithms. The 

experimental results show that GRAPHR outperforms CPU and GPU baselines in 

terms of speedup and energy efficiency. GRAPHR outperforms a CPU baseline system 

by achieving a speedup of increase to 132.67 times and an energy saving of 33.82 

times on the geometric mean. GRAPHR outperforms GPUs with a speedup ranging 

from 1.69 to 2.19 times and consumes significantly less energy, ranging from 4.77 to 

8.91 times less. In addition, GRAPHR exhibits a performance improvement ranging 

from 1.16 to 4.12 times and is significantly more energy-efficient, with a range of 

3.67 to 10.96 times, compared to a PIM-based design. 

The authors in [67] addresses the need for performing real-time analytics on 

evolving graphs to extract value from big data. The purpose of the study is to design 

a unified graph data store that supports both batch and stream analytics on evolving 

graphs. The key objectives include efficient data access, concurrent execution of 

diverse real-time analytics, high ingestion rate, and data consistency. GraphOne 

combines edge list and adjacency list storage formats to leverage their respective 

advantages. It introduces a new data abstraction called GraphView, enabling data 

access at different granularities of data ingestion. The system employs dual 

versioning to decouple graph computations from updates, ensuring data consistency 

during concurrent processing. Experimental evaluations compare GraphOne with 

state-of-the-art graph systems, demonstrating its superior performance in ingestion 

rate, batch analytics (e.g., BFS and PageRank), and stream analytics (e.g., streaming 

BFS). The experimental results show that GraphOne outperforms existing dynamic 
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graph systems in terms of ingestion rate, achieving an average speed up of 11.40× 
against LLAMA and 5.36× against Stinger.  

The paper [68]addresses the challenge of graph partitioning in distributed 

graph processing applications. Graph partitioning involves dividing a large graph 

into subgraphs to be processed by distributed systems. The paper introduces 

CUTTANA, a streaming graph partitioner for the purpose of partition massive graphs 

with high quality compared to existing streaming solutions. It aims to reduce 

workload execution time, worker imbalance, and network overhead. The paper also 

focuses on evaluating the performance of CUTTANA in distributed graph analytics 

and databases, comparing it with other partitioning methods. It uses a scalable 

coarsening and refinement technique to improve the intermediate assignment made 

by a streaming partitioner. The buffering approach avoids storing the entire graph 

in memory while ensuring sufficient data for accurate partitioning decisions. The 

coarsening and refinement strategy efficiently identifies and implements the best 

moves to enhance partitioning quality. Additionally, a parallel implementation of 

CUTTANA is provided to achieve rapid partitioning speed. Experimental analysis 

demonstrates that CUTTANA consistently outperforms existing streaming vertex 

partitioners in terms of both edge-cut and communication volume metrics. It 

exhibits better partitioning quality, resulting in improved runtime performance in 

graph analytics applications (up to 59% compared to various streaming 

partitioners) and higher query throughput in graph databases (up to 23% 

improvement over the best existing partitioner). CUTTANA also addresses the 

worker imbalance issue observed in edge-cut partitioners. 

The large-scale graphs are computationally expensive. K-Path centrality 

quantifies the transmission of information within a graph along direct channels 

having a maximum length of K. the researchers of[69] Presenting a novel technique, 

known as the random neighbor traversal graph (RaNT-Graph), for enhancing the 

calculation of K-Path centrality. The RaNT-Graph is a decentralized data structure for 

graphs that integrates vertex delegation splitting and rejection sampling algorithms. 

The objective is to facilitate the selection of a vast number of random walks and 

paths in extensive scale-free graphs. The RaNT-Graph technique employs vertex 

delegation partitioning to evenly distribute compute, communication, and storage 

across processors. Vertices with a high degree or hubs are divided, and their lists of 

adjacent vertices are disseminated to all processors. This aids in mitigating the 

disparity in computational capacity. In addition, rejection sampling is used to 

effectively sample random pathways. Rejection sampling is a method that chooses 

vertices that have not been visited yet, hence decreasing computing time by 

excluding vertices that have already been visited. The weak scaling trials showcase 

the effectiveness of RaNT-Graph on R-MAT graphs, but the strong scaling studies 

exhibit a substantial improvement in speed compared to the baseline 1D partitioned 

version. RaNT-Graph demonstrated a significant acceleration of 56,544 times when 

predicting K-Path centrality in an experiment conducted on a graph containing 89 

million vertices and 1.9 billion edges.Efficient graph processing in various domains 
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such as bioinformatics, social networking, and web analysis is very important. A 

study [70] that discuss the existing frameworks, including vertex programming and 

sparse linear algebra approaches, and identify the key building block operations, 

SpMSpV and SpGEMM, for expressing graph computations. The authors proposed 

the development of GraphPad, a high-performance framework for generalized 

SpMSpV and SpGEMM primitives, and evaluate its scalability and performance 

compared to existing frameworks. It also investigates partitioning strategies and 

communication optimizations that are crucial for efficient graph processing. The 

authors implement four graph applications using GraphPad, which offers flexibility 

in accommodating different data layouts, partitioning strategies, and 

communication optimizations. They study real-world graphs with over a billion 

edges and synthetic graphs with up to 8 billion edges. The paper explores load 

balancing, communication optimizations, and different partitioning schemes to 

optimize performance. In result, the study demonstrate that GraphPad outperforms 

CombBLAS, a high-performing graph analytics framework, by up to 40 times in 

terms of performance. The scalability of GraphPad is shown on a scale of up to 64 

nodes, and its performance is within 2 times of GraphMat, a high-performance graph 

framework, for four out of five benchmarks on a single node.  

I. Discussion and Comparison 

The papers analyze diverse obstacles and suggest creative strategies for 
handling extensive graph processing in various computational settings. The 
examined research employs several methodology and strategies, which are 
categorized into Aims, Techniques, and Results as in Table 1. 

 
Table 1. A summary of the reviewed articles. 

References Aims Model Results 
[57]  
2023 

Enables efficient 
processing of large graphs 
and facilitates real-time 
applications 

proposed an algorithm, 
called BiECCA that is 
builds upon existing 
“Star Algorithm” 

Time of finding 2-ECCs 
increases with an 
increase in the graph 
size. 

[58] 
2023 

The primary aim of the 
study is to develop security 
methods for essential 
graph analysis tasks, 
specifically graphs 
outsourced to the cloud 
server 

Two algorithms: 
Additional Substance 
Homomorphic 
Encryption (ASHE) and 
Some Degree 
Homomorphic 
Encryption (SDHE) 

SDHE-based strategies 
perform well in reducing 
computing time, while 
ASHE-based methods are 
more efficient in 
reducing storage costs 

[59] 
2019 

To develop a graph 
processing framework that 
takes into account quality 
of service (QoS) 
requirements and 
efficiently provisions 
resources to minimize 

Used optimization 
techniques called 
dynamic auto-scaling 
algorithm. In addition 
to dynamic 
repartitioning 
approach and mapping 
strategy 

GPaaS reduces the 
execution time by 10-
15% compared to Giraph 
and significantly reduces 
monetary costs by more 
than 40% compared to 
both Giraph and 
PowerGraph 
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monetary costs and 
execution time 

[60] 
2020 

leverages computation 
redundancy to reduce the 
communication load in 
large-scale graph 
processing 

Proposed framework 
that is built upon the 
graph-based 
MapReduce approach 
and introduces a 
mathematical model for 
MapReduce 
decomposition of graph 
computation tasks 

up to 50.8% 
improvement 

[61] 
2022 

Provide low-latency 
computing capabilities to 
users by deploying edge 
servers at base stations 

Proposed CEDC-IP and 
approximation 
algorithm named CEDC-
A 

The average advantage of 
CEDC-IP compared to 
other methods is 3.44% 
to 39.29% 
 

[62] 
2012 

Develop a novel graph 
partitioning framework 
that enhances the network 
performance of graph 
partitioning 

use two models namely 
partition sketch (used a 
multi-level graph 
partitioning algorithm) 
and machine graph 
(developed a network 
bandwidth aware) 

performance 
improvement of 30–85% 
and reducing network 
traffic by 30–95% 

[63] 
2021 

To address the scalability 
challenges in training 
GNNs on large graphs in a 
distributed fashion 

Proposes P3 
optimization method 
that will reduce 
network 
communication 
inefficiencies, utilize 
GPUs effectively 

P3 outperforms state-of-
the-art frameworks by 
up to 7 times 

[64] 
2013 

provide a general-purpose 
graph engine that supports 
both online query 
processing and offline 
graph analytics 

Introduced a 
distributed graph 
engine called Trinity 

Optimizing memory, 
communication and 
improved performance 

[65] 
2018 

Process massive graphs on 
supercomputers, allowing 
for timely and efficient 
analysis of complex 
systems 

Combine four 
techniques (Hardware 
specialization, 
Super node routing, on 
chip sorting, and degree 
aware messaging) 

Using a super computer 
it could process 12 
trillion edges in 8.5 
seconds 

[66] 
2017 

Overcome poor locality, 
high memory bandwidth 
requirements, and energy 
consumption 

Introduce GRAPHR, the 
primary accelerator of 
graph processing 
that depends on 
ReRAM. 

Compared to CPU, GPUs 
and in memory 
processing, GRAPHR is 
faster and more energy 
saving 
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[67] 
2020 

Graph with efficient data 
access, concurrent 
execution of diverse real-
time analytics, high 
ingestion rate, and data 
consistency. 

Propose a graph data 
store called GraphOne 

GraphOne achieves high 
performance, concurrent 
execution of diverse 
analytics, and efficient 
data access. 

[68] 
2023 

Dividing a large graph into 
subgraphs to be processed 
by distributed systems 

Introduces CUTTANA, a 
streaming graph 
partitioner 

improved runtime 
performance by 59% and 
23% higher query 
throughput 

[71] 
2023 

To optimize the estimating 
K-Path centrality in large-
scale graphs 

A new approach called 
the random neighbor 
traversal graph (RaNT-
Graph) 

RaNT-Graph achieved a 
56,544x speedup when 
guessing K-Path 
significance on a graph 
with 89 million vertices 
and 1.9 billion edges 

[69] 
2016 

Optimize the 
implementations of graph 
analytics 

Developing GraphPad, a 
set of optimized graph 
primitives 

GraphPad outperforms 
CombBLAS by 40x 
performance, and 
GraphMat by 2x and 
Scalability up to 64 nodes 

 

J. Extracted Statistics 
The article reviewed are tackling variety of graph areas, the table below list the 
theme and the research that investigating it. 
 

Table 2. Viewed themes references 
Graph Processing Area References 

Graph Processing Frameworks [59], [60], 
[62], [64] 

Graph Optimization [63], [69], 
[71] 

Real-time Graph applications [57], [67] 

Partitioning of Large Graphs [61] 

Hardware-Based Approaches in Graph 
Processing 

[65] 

Graph Security [58] 

 

Furthermore, the pie chart illustrates the number of and percentage of the viewed articles. 
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Figure 3: Viewed articles themes, number of and percentage 

K. Recommendations 

Based on a comprehensive review of the research studies cited in this article, the 
authors propose the following recommendations.  

1. Development of Efficient Partitioning Strategies: Given the challenges 

associated with distributed graph processing, it is recommended to focus on 

the development of efficient partitioning strategies. These strategies should 

aim to balance the workload and minimize communication overhead, 

ensuring optimal performance in cloud computing environments. 

2. Further Research on Load Balancing Techniques: Load balancing plays a 

crucial role in distributed graph processing. Future research efforts should 

focus on exploring and developing advanced load balancing techniques that 

can effectively distribute the computational workload across multiple 

machines, maximizing resource utilization and minimizing processing time. 

3. Exploration of Optimization Techniques: To enhance the efficiency and 

scalability of distributed graph processing, it is recommended to explore 

and develop optimization techniques specifically tailored for cloud 

computing environments. These techniques may include algorithmic 

improvements, data compression methods, and memory management 

strategies to address the challenges posed by large-scale graphs. 

4. Comparative Analysis of Graph Processing Frameworks: Conducting a 

comparative analysis of existing graph processing frameworks, such as 

Apache Giraph, Apache Flink, and GraphX, would provide valuable insights 

into their performance, scalability, and ease of use. This analysis can help 

researchers and practitioners in selecting the most suitable framework for 

their specific graph analytics applications. 

5. Evaluation of Graph Processing on Different Cloud Computing Platforms: It 

is advisable to evaluate the performance, scalability, and efficiency metrics 

of representative large-scale graph analytics applications on different cloud 

computing platforms, such as Amazon Web Services (AWS), Google Cloud 

Platform (GCP), and Microsoft Azure. This evaluation can provide practical 

Graph Optimization; 3; 
22%

Graph Processing 
Frameworks; 4; 29%

Graph Security; 1; 7%

Hardware-Based 
Approaches in Graph 

Processing; 2; 14%

Partitioning of Large 
Graphs; 2; 14%

Real-time Graph 
applications; 2; 14%
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insights into the strengths and weaknesses of each platform, enabling 

informed decision-making in terms of platform selection for distributed 

graph processing tasks. 

6. Collaboration between Researchers and Practitioners: Given the complexity 

and evolving nature of distributed graph processing in cloud computing, 

collaboration between researchers and practitioners is essential. Close 

collaboration can facilitate the exchange of knowledge, ideas, and practical 

experiences, leading to the development of more efficient and scalable 

graph processing techniques. 

L. Conclusion  

This study has presented a comprehensive review of the challenges, techniques, 
frameworks, and advancements in distributed graph processing. The rapid growth 
of graph data in various domains has created a need for efficient graph processing 
techniques in cloud computing environments. The article highlights the challenges 
associated with distributed graph processing, including load balancing, 
communication overhead, scalability, and partitioning strategies. It provides an 
overview of existing frameworks and tools specifically designed for distributed 
graph processing in cloud environments. Various techniques and algorithms 
employed in distributed graph processing are discussed, and recent research 
advancements in optimizing distributed graph processing in cloud computing are 
reviewed. To provide practical insights, the article presents a comparative analysis 
of representative large-scale graph analytics applications implemented on different 
cloud computing platforms. Performance, scalability, and efficiency metrics are 
evaluated under varying workload sizes and graph characteristics. Overall, this 
comprehensive review serves as a valuable resource for researchers and 
practitioners in the field of large-scale graph analytics. It provides a holistic 
understanding of the state-of-the-art distributed graph processing techniques in 
cloud computing and guides future research efforts towards more efficient and 
scalable graph processing in cloud environments. The article emphasizes the 
importance of distributed graph processing in analyzing complex relationships and 
patterns within massive datasets. It highlights the significance of graph analytics in 
various real-world applications such as fraud detection, machine learning, signal 
processing, social media content processing, natural language processing, and large-
scale graph visualizations. Furthermore, the article discusses the theoretical 
foundations and methodologies employed in distributed graph processing, 
including the Bulk Synchronous Parallel (BSP) paradigm and graph processing 
frameworks such as Apache Giraph, Apache Flink, and GraphX. It also emphasizes 
the role of cloud computing technologies in facilitating distributed graph processing 
by providing essential frameworks, scalability, and resilient resources. In summary, 
the article recognizes the challenges and opportunities in distributed graph 
processing for large-scale graph analytics in cloud computing. It provides a 
comprehensive overview of the current state-of-the-art, explores optimization 
techniques, and presents practical insights through comparative analysis. This 
review serves as a valuable guide for researchers and practitioners seeking to 
enhance the efficiency and scalability of graph processing in cloud environments. 
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