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In the realm of cloud computing, the literature defines scalability as the 
inherent ability of a system, application, or infrastructure to adapt and 
accommodate varying workloads or demands efficiently. It encompasses the 
system's capability to handle increased or decreased usage with 
compromising performance, responsiveness, or stability. In this paper, a 
comprehensive review is presented regarding the scalability in the cloud 
computing network. In addition, the research community define the 
scalability as a dynamic attribute, emphasizing its ability to facilitate both 
horizontal and vertical scaling. Horizontal scalability involves adding or 
removing instances or nodes to distribute workloads across multiple 
resources, while vertical scalability focuses on enhancing the capacity of 
existing resources within a single entity. They established a global 
frameworks to evaluate scalability, often emphasizing response time, 
throughput, resource utilization, and cost-efficiency as critical metrics. These 
metrics serve as benchmarks to assess the system's ability to scale effectively 
without compromising performance or incurring unnecessary costs [1]. The 
literature underscores scalability's interconnectedness with elasticity, 
highlighting the need for on-demand resource provisioning and de-
provisioning to maintain an agile and adaptable infrastructure. Overall, in 
academic papers, cloud scalability is portrayed as a fundamental attribute 
crucial for modern computing infrastructures, enabling systems to flexibly 
and efficiently adapt to dynamic computing needs. 
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A. Introduction 

The utilization of computing tasks in remote computing clusters has become 

a prevalent practice as a result of the rapid expansion of distributed systems and 

the increasing requirements for computing power. This approach employs a 

strategy of partitioning the problem into distinct components and processing each 

component independently. This allows each processing element to focus only on 

its assigned portion of the problem simultaneously [2]. Different software 

frameworks are used to improve the efficiency of distributed systems in these 

situations. These frameworks are employed for the administration of large-scale 

data storage. Hadoop is an exceptionally beneficial software framework for 

harnessing data in distributed systems. This software streamlines the process of 

forming machine clusters and allocating tasks among them, while guaranteeing 

adherence to appropriate formatting. Hadoop comprises two primary elements: 

the Hadoop Distributed File System (HDFS) and MapReduce (MR). By leveraging 

Hadoop, we can efficiently analyze, compute, and distribute the frequencies of 

individual words in a sizable file, enabling us to ascertain the significance of each 

phrase. The authors in study [3] provided a comprehensive explanation of this 

particular software and its structure. The traditional model of a general-purpose 

computer that operates independently is being substituted with a more varied, 

transparent, and adaptable paradigm. The broadening of the cloud computing 

concept, coupled with alterations in its industry framework, has radically 

revolutionized the service paradigm. Cloud computing is available in three distinct 

forms: the public cloud, the private cloud, and the hybrid cloud [4]. Furthermore, a 

variety of services are offered, which may be categorized into three main 

classifications: (a) Software as a Service (SaaS), (b) Infrastructure as a Service 

(IaaS), and (c) Platform as a Service (PaaS) [5].  Although SaaS, PaaS, and IaaS 

technologies improve the convenience of applications, a critical issue in cloud 

computing is how to offer distinct services to clients and enable them to select 

their desired service level on various devices or platforms. Therefore, it is essential 

to give priority to the functioning of the cloud computing platform in order to 

enable comprehensive evaluation and improvement [6]. Cloud computing 

designers must prioritize scalability as a critical consideration. Scalability is 

employed to determine if a cloud system can handle a substantial volume of 

simultaneous application requests [7]. The scholarly community dedicated 

significant attention to this subject. Hwang et al. [8] introduced the importance of 

scalability in cloud computing. Chen et al. [9] examined the ability of video 

streaming solutions to handle increasing demands in a multi-cloud environment. 

Anandhi and Chitra [10] examined the scalability of a cloud database by 

considering the consistency attribute. Tian et al. [11] employed a stochastic service 

decision network model to examine the scalability of cloud computing in terms of 

performance, with energy consumption serving as a limiting factor. Scalability 
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benchmarking is crucial in cloud computing networks as it allows for the dynamic 

allocation of resources in response to varying workloads, ensuring adaptability 

and real-time adjustments [12] [13]. This adaptability ensures systems can meet 

varying demands without compromising performance or incurring downtime [14]. 

Also, Cloud scalability directly impacts performance optimization. By efficiently 

allocating resources, systems maintain responsiveness even during peak usage, 

ensuring consistent service levels and user experiences. In addition, scalability 

promotes cost efficiency by allowing resource provisioning based on actual 

demand. It mitigates over-provisioning, preventing unnecessary expenses during 

low-usage periods, thus optimizing cost-effectiveness. The contributions of this 

paper are to dive in studies regarding the scalability within cloud computing, 

determining the suitable metrics that increase the effeminacy of the systems, and 

listing the limitations and challenges in this field. 

   

B. Background and Preliminary 

1. The mechanism of cloud computing 
Efficiently distributing tasks and resources is a crucial area of research in 

cloud computing systems, which must accommodate a high number of users and 

workloads. This necessitates the design of a scheduling mechanism that can scale 

effectively [15]. Within the realm of cloud computing, clients make requests for a 

variety of resources, such as compute capacity and access to storage. The request 

type of a specific device is determined by its access mode and may vary from the 

requests made by other devices. The request can be transmitted either by wireless 

broadcasting or through unicast/multicast in a specified local area network (LAN). 

The request scheduling layer has the capability to assign many servers to meet the 

needs of a client, allowing for the representation of various configurations. For 

instance, a specific broadcast request may be viewed as a scenario in which this 

device is controlled by all the servers in the request schedule layer and 

consistently transmits the requests to them concurrently [16]. Considering the 

disparities in the duration it takes for links to numerous servers and other external 

factors, the broadcast request can be seen as an assemblage of devices supervised 

by a single server. 

Cloud-hosted virtual servers or clustered systems efficiently deliver 

computational services and manage virtual resources, guaranteeing rapid client 

answers [17]. Upon receiving the scheduling request, clients are allocated virtual 

servers that are tailored to their precise computational and storage needs. 

Concurrently, every virtual server provides information about its current state to a 

scheduling layer [18]. If a status report is not received within the specified interval, 

the request scheduling system considers it as a passive timeout report, indicating 

the failure of a certain virtual server. The virtual server will undergo live migration 

based on the virtual management requirements or as advised by the request 
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scheduling layer. The former typically arises from issues related to load and power 

management. However, the request scheduling layer oversees the rearrangement 

of resource distribution in order to meet client demands or improve performance 

[19] [20]. 

 

2. Scalability in Cloud Computing 
Figure 1 illustrates the performance of two distinct systems, F and G. The 

example illustrates the relationship between the average response time and the 

number of requests that the system needs to handle every hour. Thus, the system 

is evaluated based on a specific frequency of inquiries over an extended duration. 

System F has superior performance compared to G for both 100 and 200 requests 

per hour. Nevertheless, G surpasses F in performance when the number of 

requests per hour approaches 300 [21]. Based on Figure 1, it is not evident which 

system exhibits superior scalability. However, it appears that system G possesses 

more favorable scaling characteristics. In order to address such arguments, it is 

necessary to have a precise understanding of scalability. 

 

 

Figure 1. Shows the performance graphs for two systems, F and G. [21]. 
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3. Definition and metrics on scalability 
When evaluating the scalability of a system, it is essential to establish a clear 

and unequivocal definition of scalability. This part explores several facets of 

scalability and provides a thorough explanation of the formal concept of scalability 

for cloud applications, which serves as the foundation of this study. According to 

Henning and Hasselbring [22], scalability is the capacity of a system to fulfill its 

service level objectives for all levels of demand within a specified range, maybe by 

utilizing more resources. The notion is derived from the definition provided by 

Herbst et al. [23], wherein scalability of cloud systems refers to the system's ability 

to handle increasing workloads while maintaining satisfactory performance, which 

includes the incorporation of hardware resources. Scalability is based on the 

different attributes described by Weber et al. [24] as follow: 

1. Load Intensity: refers to the workload that a system needs to manage. 

2. Provisioned Resources: explain the least computational resources 

necessary to handle a specific level of workload intensity. 

3. Service Level Objects (SLOs): specify the minimum performance 

standards that the system being tested must meet. 

4. Efficiency: two fundamental principles constrain the efficiency of a 

distributed system: 

5. Latency: it is the time that required for a message to travel between two 

points in a distributed system. 

6. Bandwidth: refers to the rate at which data may be transmitted or 

transferred during a given time period while maintaining a consistent 

condition. Furthermore, it is imperative to incorporate two prominent 

indicators of efficiency in this context: 

7. Response Time: refers to the duration required to receive a result 

following the submission of a job for processing by the system. 

8. Throughput: refers to the capacity of a system to efficiently process and 

handle large amounts of data or tasks.  Put simply, it refers to the rate at 

which things are completed within a given timeframe. The objective of the 

distributed computing system is to optimize performance by minimizing 

latency and reaction time while simultaneously boosting throughput [25]. 

9. Elasticity: Conversely, it assesses the dynamic alterations of a system and 

measures the system's capacity to adjust itself across shorter time periods. 

Elasticity refers to the system's capacity to dynamically adjust its resource 

allocation in response to changes in workload, ensuring that the available 

resources closely align with the current demand at any given time  [23]. 

Elastic computing is the process of adjusting the capacity of computer 

resources to align with a fluctuating workload, hence ensuring optimal use. 

Elasticity in communication networks pertains to the network's capacity to 

modify its functioning and redistribute resources (resource supply) in 
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accordance with temporal and spatial variations in traffic and service 

demand (resource demand). This may entail the utilization of computer and 

communications resources, specifically for the purpose of overseeing 

computational resources in software and virtualized networks, such as 

those employed in 5G systems. Figure 2 illustrates the temporal elasticity of 

a system by contrasting the system's demand and supply of resources. 

Scalability refers to the ability to add resources to a system. Nevertheless, 

the definition fails to specify the process by which these resources are 

included. 

Figure 2. The elastic relationship between resource supply and demand [23]. 
 

There are two methods for adding resources: vertical and horizontal scaling. 

1. Vertical scaling: Vertical scaling refers to the process of increasing 

the resources allocated to individual processing nodes. An effective 

approach to achieve this is by enhancing the system with supplementary 

hardware. Implementing vertical scaling is typically straightforward as it 

often does not necessitate a specific system architecture. However, to 

enable the use of additional CPUs or CPU cores, it is essential for the 

software to support parallel processing. Moreover, it is crucial to 

acknowledge that vertical scaling is constrained by the economic 

impracticality of operating high-performance technology and the presence 

of fundamental physical constraints. 

2. Horizontal scaling: Horizontal scaling refers to the process of 

augmenting a distributed system by including additional computing nodes. 

Horizontal scaling offers the advantage of unrestricted expansion and is 
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generally more cost-effective compared to vertical scaling, as it does not 

require expensive high-end equipment. Horizontal scaling has a drawback 

in that it is not universally compatible with all systems. Moreover, a higher 

frequency of occurrences can lead to issues about uniformity or 

accessibility. 

The challenges and limitations of cloud scalability 
Scalability is a pivotal aspect of cloud computing, enabling businesses to 

flexibly expand or contract their resources based on demand. While the cloud 

offers remarkable scalability advantages, it also presents a myriad of challenges 

and limitations that organizations must navigate to ensure optimal performance 

and reliability [26][27][28]. 

 

4. Challenges of Cloud Scalability 
1. Architectural Complexity: cloud scalability is often impeded by the 

complexity of the architecture itself. Distributed systems, varying 

infrastructure, and interdependencies among components can complicate 

scaling efforts. As applications grow, managing these complexities becomes 

increasingly challenging [29]. 

2. Cost Management: while scalability provides the ability to adjust 

resources dynamically, it can also lead to cost inefficiencies. Over-

provisioning resources might occur, especially when scaling anticipates 

future demand inaccurately, resulting in unnecessary expenses. 

3. Performance Bottlenecks: scaling applications might reveal 

performance bottlenecks that were previously hidden. Issues like latency, 

network congestion, or limitations in underlying infrastructure can surface 

when scaling, affecting overall system performance. 

4. Data Management and Storage: managing big data in a scalable 

manner is a significant challenge. Ensuring data consistency, integrity, and 

accessibility across distributed systems becomes complex as data storage 

needs expand [30]. 

5. Security Concerns: scalability can potentially heighten security 

risks. As the system expands, there might be more entry points for 

attackers, and ensuring robust security measures across all components 

becomes crucial but challenging [31] [32]. 

 

5. Limitations of Cloud Scalability 
1. Resource Constraints: despite the promise of infinite scalability, 

cloud providers still have resource constraints. Instances of sudden, 

massive scaling might hit these limits, causing disruptions or service 

degradation. 
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2. Legacy Systems Integration: integrating legacy systems with 

scalable cloud infrastructure poses a challenge. Often, older applications 

and infrastructure lack compatibility with modern cloud environments, 

impeding seamless scalability [33]. 

3. Scalability Planning: accurately predicting future scaling needs is 

challenging. Organizations must strike a balance between under-

provisioning (which can lead to performance issues during traffic spikes) 

and over-provisioning (resulting in increased costs during periods of lower 

demand). 

4. Operational Complexity: scalability introduces operational 

complexities, especially in terms of monitoring, configuration, and 

management. Orchestrating and maintaining large-scale systems require 

specialized skills and robust tooling [34]. 

 

6. Addressing Scalability Challenges 
To mitigate these challenges and limitations, organizations must adopt 

several strategies: 

1. Design for Scalability: Building applications with scalability in 

mind from the outset can streamline future scaling efforts. 

2. Automate Scaling Processes: implementing automated scaling 

mechanisms based on predefined metrics helps in efficient resource 

allocation. 

3. Utilize Hybrid Cloud Solutions: The integration of public and 

private cloud services offers more adaptability and reduces the potential for 

vendor lock-in. 

4. Continuous Monitoring and Optimization: regularly monitor and 

optimize infrastructure to identify and address performance bottlenecks 

and cost inefficiencies [35]. 

Cloud scalability is undeniably a transformative capability, yet it demands 

careful planning, proactive management, and continuous optimization to harness 

its full potential while navigating its inherent challenges and limitations. 

 

C. Literature Survey 

Scalability is a crucial aspect in evaluating the cost-efficiency relationship in 

large-scale distributed service systems. Numerous research have been undertaken 

on this subject for each distinct system, although only a handful of them have 

tackled the overall definition of scalability itself.  

The authors Brataas et al. [36] have defined scalability as "the capacity of a 

service to expand its capabilities by utilizing additional resources within the 

resource space." This definition has been further expanded upon by Lehrig et al. 
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[37]. They introduced two metric functions, namely resource and cost, to measure 

scalability. The resource scalability meter function demonstrates the relationship 

between the capacity of a cloud software service and its utilization of cloud 

resources. This statistic is primarily related to a particular kind of cloud resource, 

such as the specifications of application virtual machine (VM) instances. Upon the 

introduction of novel cloud resources, the cost scalability metric function is 

deployed. This function establishes the relationship between the capability of a 

cloud-based software service and the expenditure on cloud resources. The 

suggested metric functions enable researchers to analyze the impact of job 

features and quality criteria on the scalability of the service. The scalability of the 

Cloud Store's measure functions was evaluated through empirical analysis in both 

the public Amazon Web Services (AWS) and a private OpenStack-based 

environment. There were a total of 53 measurements taken for 21 different AWS 

settings. The results indicated that the proposed scalability metric functions 

provided thorough insights, including the identification of cost-efficient resource 

combinations for a specific capacity. In a prior publication [38], the authors 

presented a theoretical approach that specifically addresses the issue of scalability 

in mobile multi-agent systems. Nevertheless, it is crucial to acknowledge that this 

framework is confined to theoretical notions and modeling outcomes.  

In addition, a study  [39] established standardized metrics to assess the 

scalability of stream processing engines. The authors suggested two 

measurements based on established concepts of scalability in cloud computing: a 

load capacity function and a resource demand function. Both measures assess the 

allocation of resources and the intensity of demand, while also ensuring the 

attainment of specific service level goals. Their demonstration showcased the use 

of these metrics for scalability benchmarking and examined their superiority 

compared to commonly employed metrics in stream processing engines and other 

software systems. 

Similarly, a study [40] proposed a Theodolite approach for measuring 

distributed system scalability in cloud contexts, as well as how resource 

requirement grows with increasing workloads. This study laid the groundwork for 

undertaking extensive cloud scalability evaluations. Moreover, the proposed 

approach may be used to compare different stream processing engines and assess 

their scalability across different workload dimensions. 

Another study [41] presented a detailed and formal representation of the 

scalability of the request scheduling process in cloud computing. It provided a 

clear explanation of the scalability notion. The authors assessed the scalability of 

the scheduling server by modeling it as a stochastic preemptive priority queue. 

The research encompassed both theoretical and numerical methodologies, 

exploring many structures and diverse environmental configurations. 
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De Donno et al. [42] classified scalability into two distinct categories: scale-

up elasticity and scale-down elasticity. Scale-up elasticity entails the incorporation 

of extensive processing, storage, and network resources to fulfill user needs. Its 

main objective is not cost optimization, but rather fulfilling operational necessities. 

In contrast, the ability to scale down allows for the steady-state expenditure to 

closely align with the steady-state workload, particularly in small- and medium-

sized firms and organizations that have limited computing resources [43]. 

Tiwari et al. [44] demonstrated the ability of multiprocessor systems to 

handle larger workloads, as evaluated by the efficiency measured in terms of 

speedup. The execution time on a system with a size of n and k processors is 

denoted as Time (k, n). The ideas of speedup and efficiency can be precisely 

described as follows: The speedup (k, n) is the quotient of the time required to 

finish a task using one processor and the time required to finish the same work 

using k processors. The efficiency (k) is the speedup (k, n) divided by k. The 

Universal Scalability Law is a precise performance model that appropriately 

characterizes the scalability of universal systems. This study investigates the 

practicality of integrating the Universal Scalability Law into the Theodolite 

benchmarking framework for cloud-native stream processing systems. Theodolite 

evaluates scalability by employing service level objectives (SLOs) [45]. 

Similarly, a study [46] proposed employing the Universal Scalability Law, a 

performance model that precisely characterizes the scalability of universal 

systems. The study investigated the practicality of integrating the Universal 

Scalability Law into the Theodolite benchmarking framework for cloud-native 

stream processing systems. Theodolite evaluated scalability by employing service 

level objectives (SLOs). 

Two criteria, latency and throughput, were introduced by other authors [47] 

to assess the scalability of cloud computing services. These measurements are 

frequently employed for this purpose, as indicated by a study [48]. Furthermore, 

the study observed the utilization of CPU and network resources to assess the 

effectiveness of cloud services. The researchers employed three cloud services, 

specifically Apache Flink, Apache Storm, and Apache Spark Streaming. The findings 

indicate that Storm and Flink exhibit comparable performance, whereas Spark 

Streaming exhibits significantly higher latency but offers greater throughput. 

Other authors proposed applying cloud computing approach in an area that 

has lack in such technology. This study presented and implemented a model of 

Human Resource (HR) for management system to address HR issues in this 

domain by leveraging Cloud Technology. The suggested solution has sixteen basic 

modules and was constructed by utilizing many technologies [49][50].  

The purpose of this study [51] was to gather data on the performance of a 

cutting-edge stream processing framework in relation to various execution 

parameters and scalability factors. The authors systematically evaluated the 
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scalability of five contemporary stream processing systems. A comprehensive 

series of experiments were carried out on Kubernetes clusters in both the Google 

cloud and a private cloud [52]. Throughout the testing, they effectively deployed 

and ran a maximum of 110 micro service instances simultaneously, with each 

instance capable of processing up to one million messages per second. Each of the 

benchmarked frameworks demonstrates a nearly proportional increase in 

performance when an adequate amount of cloud resources are allocated. 

Nevertheless, the frameworks exhibit significant disparities in the rate at which 

additional resources must be incorporated to handle a growing workload. 

Conversely, a research publication [22] developed a benchmarking technique 

that enables the research community to do empirical scalability assessments of 

cloud-native apps and frameworks. The effort involved conducting scalability 

measurements, developing quantification techniques, and creating a scalability 

benchmarking tool specifically designed for cloud systems. Several separate tests 

were undertaken to assess whether the specified service level goals (SLOs) are met 

under different combinations of load and resources. This benchmarking 

methodology provides the chance to adjust the configuration in a manner that 

attains a harmonious combination of user-friendliness and the capacity to replicate 

results. Additionally, it enables providers to choose the balance between the 

overall execution duration and statistical grounding. The objective was 

accomplished by employing two stream processing frameworks, Kafka Streams 

and Flink, alongside conducting investigations in two public clouds and one private 

cloud. The results showed that regardless of the cloud platform utilized, 

determining the requirements for Service Level Objectives (SLOs) only 

necessitated a limited number of iterations (5) and a short execution time (5 

minutes) [53]. The study concluded that the proposed method allows for the 

evaluation of scalability within a reasonable duration. The study suggested 

enhancing the efficiency of benchmark execution by incorporating a heuristic 

based on the Universal Scalability Law (USL). Furthermore, there is a requirement 

for a tool that enables the analysis of benchmark results in relation to the Upper 

Specification Limit (USL). 

In reference to [54], The authors suggest a scalable cloud-native architecture, 

known as a cloud-native solution, for a mobility management entity. The premise 

of this statement is that incorporating virtualization into the central network of the 

5G cloud native architecture can significantly decrease the expenses associated 

with implementation. The primary goal of this design is to operate as a data 

production center utilizing micro services. The design provides excellent 

scalability and the capability to automatically adjust the required micro services, 

allowing for load balancing of the entire system. Similarly, the authors in study 

[55] examined the concept of database management system (DBMS) by conducting 

a comprehensive literature review and systematic analysis. It investigated the 
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principles of distributed database management systems (DDBMS) and identified 

suitable architectures for DDBMS solutions. The article also offers justified 

recommendations based on the needs and perceptions of users. 

Many studies made a survey about distributes systems and how they impact 

on the efficiency of such systems. For example, a research [56] investigated the 

impact of the distributed-memory parallel processing technique on enhancing the 

efficiency of multicomputer multicore systems. Furthermore, several 

methodologies have been presented for utilization in distributed-memory systems 

[57]. The objective of the study was to ascertain the optimal strategy for improving 

the performance of multicore processors in distributed systems. The most efficient 

strategies were employing an operating system known as gun/Linux 4.8.0-36, an 

Intel Xeon 2.5 CPU, and the python programming language. The authors in these 

studies [58] [59] Implemented a model to facilitate users in doing composite jobs 

interactively with little processing time. Distributed-Parallel-Processing and Cloud 

Computing are two highly advanced technologies that excel in rapidly processing 

and resolving customer problems. The proposed system exhibited enhanced 

efficiency and surpassed other systems in terms of parallel processing.  

In recent years, there has been a significant increase in the utilization of 

machine learning, deep learning, and reinforcement learning algorithms. Machine 

learning enables researchers and engineers to quickly predict and estimate the 

best answers to research challenges. Machine learning is progressively shifting 

towards operating on cloud-native systems, primarily because of the advantages 

offered by the cloud's vast processing resources for the learning process [54]. The 

driving force behind this trend is the enhancement of software service design. The 

scalability and flexibility of cloud native architecture efficiently cater to the 

resource requirements of machine learning. While cloud native features and 

benefits can improve machine learning operations, they nevertheless face issues in 

load balancing [60].  

D. Discussion and Comparison 
Based on the reviewing of studies in the literature, there were different 

opinions about a precise definition of the scalability and how this metric can be 

evaluated to obtain high performance for the cloud computing systems. For 

instances, studies [36], [37], [39], [40] defined the scalability based on parameters 

which are capacity of the system to consume resources and cost. The authors 

claimed that when new cloud resources are created, the cost scalability metric 

function is deployed.  

This function denotes the correlation between the capability of a cloud 

software service and the expenditure of the cloud resources it necessitates. The 

suggested metric functions enable researchers to analyze the impact of task 

parameters and quality standards on the scalability of the service. Other research  
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[42], [43] proposed the utilization of an elasticity parameter to characterize the 

scalability in two modes: scale-up elasticity and scale-down elasticity. Significant 

processing, storage, and network resources were combined to meet the demands 

of users in terms of scalability, which is a necessity for operations rather than a 

means of cost reduction. Scale-down elasticity ensures that steady-state 

expenditure is in line with workload, particularly in small- and medium-sized 

enterprises and organizations that have limited computing resources. In 

investigations [44], [46], the authors introduced the Universal Scalability Law, a 

performance model that effectively characterizes the scalability of universal 

systems. Scalability is evaluated by the legislation using service level objectives 

(SLOs). Other authors [47], [48] presented two criteria, latency and throughput, to 

assess the scalability of cloud computing services. However, previous studies [22], 

[51] have introduced a benchmarking approach that enables researchers to do 

empirical scalability assessments of cloud-native apps and frameworks. These 

frameworks offer the chance to customize the configuration in a manner that 

achieves a harmonious blend of user-friendliness and consistency. Additionally, it 

enables providers to choose the balance between the overall execution duration 

and statistical grounding. In recent years, there has been a growing trend in the 

utilization of machine learning, deep learning, and reinforcement learning 

algorithms [61]. Machine learning enables researchers and engineers to quickly 

predict and estimate the best possible solutions to research challenges. Table 1 

displays the synopsis of the literature survey. 

 

Table 1. The Summary of Studies on the Literature Survey  

Reference Metrics Implementation Results  
[36], 2017 Resource and cost In public and private 

clouds 
The suggested scalability metric 
functions offer comprehensive 
analysis by discovering the most 
cost-effective combinations of 
resources for a given capacity. 

[41], 2019 Configuration of 
different structural 
parameters 

Executed the task 
scheduling procedure in 
the domain of public 
cloud computing. 

Analyzing, comparing, and drawing 
conclusions can serve as a 
significant point of reference for 
designing cloud networks 

[42], 2019 The concepts of 
scale-up and scale-
down elasticity 

Explored the 
fundamental 
distinctions among 
Cloud computing, Fog 
computing, Edge 
computing, and IoT, and 
their 
interconnectedness in 
the progression of the 

The results showed the significance 
of Fog computing and asserted that 
Fog server as the cohesive element 
that connects IoT, Cloud, and Edge 
computing. 
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computing paradigm. 
[47], 2019 Latency and 

throughput 
Apache Flink, Apache 
Storm, and Apache 
Spark which are private 
clouds. 

Our results demonstrate that Storm 
and Flink exhibit comparable 
performance, whereas Spark 
Streaming exhibits significantly 
higher latency despite offering 
greater throughput. 
 

[49], 2020 _ Elastic Compute Cloud 
(EC2) and Amazon Web 
Service (AWS). 

The method make the small and 
medium Businesses to handle their 
finances and paperwork. The 
method also made communication 
better and saved time, money, and 
effort. 

[40], 2020 Resources demand 
and  workloads 

Developed a 
comprehensive 
framework for 
evaluating the 
scalability of a system, 
this can be utilized to 
execute specific 
benchmarks for a given 
use case and workload 
magnitude. The study 
employed Kafka Stream 
clusters. 

The study demonstrated that our 
benchmarking technique is capable 
of assessing the stream processing 
engines' scalability using various 
workloads.  Furthermore, our 
results demonstrate that Kafka 
Streams exhibits scalability across 
many use cases and deployment 
options. 

[44], 2021 Execution time, 
utilization ratio and 
power consumption 

In virtual machines 
(VMs) and cloudlets, 
parameters are 
generated for the 
Shortest Job First (SJF), 
Hungarian, and First-
Come, First-Served 
(FCFS) methods. 

The suggested algorithm achieved 
higher speed in utilization ratio 
than other methods. 

[39], 2021 Load capacity 
function and a 
resource demand 
function 

Used private clouds 
networks: Kafka 
Streams and Flink 

The results showed the same 
performance for both Kafka 
Streams and Flink at reasonable 
demand and capacity, but they 
presented different behavior after 
increasing the metrics. 

[22], 2022  Loads and Resources There are two 
frameworks for 
processing streams. The 
study utilized Kafka 
Streams and Flink 
frameworks across one 
private cloud and two 

The findings indicated that, 
irrespective of the cloud platform 
used, it only required a small 
number of iterations (5) and a brief 
duration of execution (5 minutes) 
to ascertain the needs for Service 
Level Objectives (SLOs). 
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public clouds. 
[46], 2022 Recourses and 

workload 
Theodolite uses service 
level goals (SLOs) to 
evaluate scalability. 

The findings indicate that certain 
ExplorViz micro services exhibit 
linear scalability, but the overall 
scalability of the system is mostly 
limited by a single micro service. 

[51], 2023 Resource demands Conducted trials for a 
total of 740 hours using 
Kubernetes deployed 
on a private cloud and 
the Google cloud. 

Each of the benchmarked 
frameworks demonstrates a nearly 
proportional increase in 
performance as long as an 
adequate amount of cloud 
resources are allocated. 

[54], 2023 Resource 
management 

Conducted a thorough 
analysis and 
comparison of resource 
management in edge 
computing that is cloud 
native. 

The topics discussed included 
resource management through the 
use of software architecture, 
network slicing, virtualized 
network operations, and 
containerization. In addition, they 
made forecasts on cloud native 
research trends and other issues. 

 

E. Recommendations 

In cloud computing, scalability is essential for effectively managing a range of 

workloads. The following recommendations will help to guarantee scalability: 

➢ Employ Auto Scaling: enabling cloud service capabilities such 

as Auto Scaling to automatically modify resources in response to demand. 

This makes it easier to handle traffic fluctuations without the need for 

human intervention. 

➢ Micro services Architecture: using a micro services-based 

methodology when designing applications. This makes it possible to scale 

separate components independently, optimizing the use of resources. 

➢ Load balancing: Using load balancers to load balance inbound 

traffic across multiple servers or instances.  This keeps certain servers from 

experiencing overload and guarantees equitable resource use. 

➢ Elastic Storage Solutions: Select expandable storage options 

such as Azure Blob Storage, Google Cloud Storage, or Amazon S3. These 

services scale automatically in response to storage requirements. 

➢ Horizontal Scaling: designing systems to scale horizontally by 

adding more instances, instead of depending just on vertical scaling that 

raises the power of individual instances.  

➢ Analytics and Monitoring: setting reliable monitoring 

technologies to monitor system performance.  
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➢ Fault Tolerance: Implementing redundant systems, failover 

mechanisms, and backup solutions to ensure continuous operation during 

failures. 

➢ Optimize Resource Utilization: Regularly analyze resource 

usage and optimize configurations to ensure efficient utilization. Remove 

unused or underutilized resources to save costs. 

➢ Testing for Scalability: Perform regular load testing to 

identify bottlenecks and limitations in the system. Use this data to improve 

scalability. 

➢ Cost management: Scalability frequently results in higher 

expenses. Continually track and control spending with the help of cost 

analysis tools offered by cloud service providers. 

These recommendations can greatly improve the scalability of the cloud-

based systems and can efficiently manage different workloads while maximizing 

efficiency and cost. 

F. Conclusions and Future Trends 
This study presented papers in the scholar that were extensively detailed the 

metrics and measurements regarding scalability assessments, emphasizing the 

significance of response time, throughput, resource utilization, and cost-

effectiveness as critical evaluative criteria. These metrics serve as guiding that 

enabling researchers and providers to test a system's ability to scale effectively 

without losing performance or cost.  Significant processing, storage, and network 

resources were combined to meet customer demands for scale-up elasticity, which 

is a necessary operational aspect rather than a cost-saving measure. Scale-down 

elasticity ensures that steady-state expenditure is in line with workload, 

particularly in small- and medium-sized enterprises and organizations that have 

limited computing resources. In recent times, there has been an increasing trend in 

the utilization of machine learning and deep learning algorithms. Machine learning 

empowers researchers and engineers to rapidly forecast and approximate optimal 

solutions to research problems. Therefore, for future work, cloud-based machine 

learning methods enhance scalability by accurately forecasting demand patterns 

and efficiently allocating resources to accommodate different workloads. They 

implement auto-scaling methods that dynamically adapt resources, assuring 

optimal usage and cost-efficiency. These algorithms optimize performance by 

evaluating data, enhancing operations during scaling tasks. In addition, machine 

learning enables cloud systems to dynamically adjust and forecast their scaling 

capabilities. 
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