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- Precision agriculture, with its objectives of optimizing crop yields, 
decreasing resource waste, and enhancing overall farm management, has 
emerged as a revolutionary technology in modern agricultural practices. The 
advent of deep learning techniques and the Internet of Things (IoT) has 
brought about a paradigm shift in monitoring, decision-making, and 
predictive analysis within the agriculture industry. This review paper 
investigates the relationship between deep learning, the (IoT), and 
agriculture, with an emphasis on how these three domains might work 
together to optimize crop yields through intelligent decision-making. The 
integration of deep learning techniques with  (IoT) technology for precision 
agriculture is thoroughly analyzed in this study, covering recent 
developments, obstacles, and possible solutions. The paper investigates the 
role of deep learning algorithms in analyzing the vast amounts of data 
generated by IoT devices in agriculture. It scrutinizes various deep learning 
models such as convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), and their variants applied for crop disease detection, yield 
prediction, weed identification, and other crucial tasks. Furthermore, this 
review critically examines the integration of IoT-generated data with deep 
learning models, highlighting the synergistic benefits in enhancing 
agricultural decision-making, resource allocation, and predictive analytics. 
This review underscores the pivotal role of IoT and deep learning techniques 
in revolutionizing precision agriculture. It emphasizes the need for 
interdisciplinary collaboration among agronomists, data scientists, and 
engineers to harness the full potential of these technologies for sustainable 
and efficient farming practices. 
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A. Introduction 
Precision agriculture, sometimes referred to as precision farming or 

precision ag, is a cutting-edge farming management approach that makes use of 
technology to maximize crop yields, reduce waste, and boost resource efficiency. 
Precision agriculture is important because it can change conventional farming 
methods by using advanced analytics, remote sensing, and data-driven 
technologies [1].  

Drones and other remote sensing technology give farmers comprehensive 
information about the state of their crops. This makes it possible to identify 
problems like diseases, pest infestations, and nutritional deficits early on. Precision 
agriculture relies on data collected from various sources, including sensors, GPS 
technology, and weather stations. This data is analyzed to make informed 
decisions about planting, irrigation, fertilization, and harvesting. It helps farmers 
optimize their practices based on real-time information [2].  

Farmers can increase the productivity of their land by accurately adjusting 
inputs to the unique requirements of each area within a field [3] By supplying each 
plant with the materials it needs for healthy growth, this focused farming method 
increases agricultural yields. Precision agriculture lowers input costs for farmers 
by minimizing water, pesticide, and fertilizer applications that aren't essential. 
Enhancing economic efficiency is not the only benefit here; sustainability and 
environmental stewardship also benefit. Precision agriculture supports 
sustainable farming methods by reducing the use of agrochemicals and maximizing 
resource allocation. It lessens the harm that excessive runoff, soil erosion, and 
pesticide and fertilizer use cause to the ecosystem. Farmers who practice precision 
agriculture have the tools necessary to adjust to a changing climate [4] [10]. 
Precision agriculture is a revolutionary approach to farming that use technology 
and data to optimize resource utilization, improve decision-making, and eventually 
boost agricultural yields in an ecologically conscious and sustainable way. The 
Internet of Things (IOT) and deep learning have combined to drive a revolutionary 
transformation in precision agriculture in recent years. These developments have 
the potential to bring in a new era of precision agriculture by completely changing 
conventional farming methods [7].  

The term "Internet of Things" describes a network of interconnected devices 
that are equipped with software, sensors, and other technologies to allow them to 
trade and gather data. IOT devices help in the development of extensive datasets 
by continuously collecting data. In agriculture to create an extensive network of 
data-generating nodes by being placed on machines, in livestock facilities, and 
across fields. IOT devices are used tractors, soil sensors, and weather stations, are 
all designed to record real-time data that is essential for making well-informed 
decisions. Many different types of data are collected by IOT devices, such as crop 
health, temperature, humidity, and soil moisture content. The use data in real-time, 
IOT makes precision agriculture possible by making it easier to apply resources 
like pesticides, fertilizers, and water precisely [6]. 

Agriculture uses deep learning algorithms to make sense of the enormous 
datasets produced by Internet of Things sensors. These algorithms are quite good 
at identifying complex links in data, which allows them to give farmers useful 
insights [5] [10].  
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Deep learning models are able to recognize image data patterns in sensor 
data and that point to crop diseases or nutritional deficits. This makes it easier to 
intervene early, stopping the spread of diseases and optimizing crop health. Deep 
learning systems can forecast agricultural yields by analyzing historical data, 
weather patterns, and soil conditions. Farmers can use this information to plan 
harvesting schedules and make well-informed decisions regarding market supply 
[9] [8].  

The problem of this review paper in brief it is a conventional farming 
practices, which rely on human labor and crude techniques, do not match the 
increased demand of the world's population. The dual challenge of resource 
scarcity climate variability and soil degradation threaten the availability and 
reliability of essential resources for crop cultivation. Inefficiencies in resource 
utilization are exacerbated by the lack of real-time data and insights guiding 
decision-making. Uninformed decisions can result in overuse of agrochemicals, 
degradation of arable land, and economic losses for farmers. Many farmers, may 
lack access to or awareness of modern farming technologies, hindering their ability 
to make informed, data-driven decisions. 

The remaining portions of the paper are arranged as follows. The second part 
provides information on various deep learning architectures and IOT utilized in 
crop production optimization, the third part addresses the agricultural datasets 
that are accessible for crop production optimization, and the forth part expands on 
the discussion of all deep learning models for IOT-based crop production 
optimization. This review will delve into the specific applications, challenges, and 
future prospects of this amalgamation, exploring how it shapes the trajectory of 
crop yield optimization in agriculture. 

 
B. Literature Review 

The Internet of Things has experienced significant growth in the past few 
years. Several publications in the literature suggested IoT designs and platforms 
that are appropriate for use in a variety of applications, including smart cities, 
agriculture, traffic control, education, marine environments, and health care. 
Sumathi et al. [36] used a dataset to train and test an improved soil quality 
prediction model using deep learning (ISQP-DL) and the DNNR technique. Findings 
reveale that the suggested model, when compared to current models, more 
accurately classifies soil and fits the data with improved generality and efficiency. 
With regard to soil quality prediction, the ISQP-DL model performs particularly 
well, with an accuracy rate of 96.7% [36]. Meng et al. [37] carry out end-to-end 
crop mapping using three convolutional neural network (CNN) models: 1D-CNN, 
2D-CNN, and 3D-CNN. Mono-temporal and multi-temporal multispectral images 
(MSIs) of the same research area were carefully compared by Meng et al. [37]. 
According to the findings, classification accuracy with hyperspectral satellite 
images surpasses 94%, greatly outperforming mono-temporal MSIs and producing 
results that are on par with multi-temporal MSIs [37]. During the growing season 
for soybeans, Sagan et al. [38] used 25 Planet Scope (PS) and four WorldView-3 
(WV-3) satellite photos. Through the integration of spectral, spatial, and temporal 
information from satellite data, Sagan et al. [38] developed 2D and 3D 
convolutional neural network (CNN) architectures. Hundreds of features that were 
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carefully selected and found to be optimal for crop growth monitoring were then 
extracted and fed into the same deep learning model for comparison. The 2D and 
3D CNN models found that a small subset of WV-3 photos performed better than 
multitemporal PS data because WV-3 contains certain bands like RedEdge and 
SWIR. Together, these models were able to explain around 90% of the variance in 
field-scale yield [38]. "Deep multisensory learning" is a unique approach presented 
by Zheng et al. [39] that does not require registration between several sensor 
modalities. According to the approach, the parameter distribution of sensor-
specific and sensor-invariant operations accounts for the variations observed in 
deep models trained on data from different sensors. The technique used a sizable 
public dataset with high-resolution optical and SAR imagery to show the value of 
deep multisensory learning in an all-weather mapping situation with missing-
modality data.  approach performed better and more consistently than alternative 
learning techniques, demonstrating the importance of meta-sensory 
representation in multisensory remote sensing applications [39]. Adrian et al. [40] 
mapped ten crop kinds together with water, soil, and urban areas using a deep 
learning technique that makes use of denoised backscatter and texture information 
from multi-temporal Sentinel-1 SAR data and spectrum information from multi-
temporal optical Sentinel-2 data. where an overall score of 0.941 was found after a 
comparison of several deep learning networks (3D U-Net, 2D U-Net, SegNet) and 
conventional machine learning techniques like Random Forest [40]. Garibaldi-
Márquez et al [41] using multi-plant images to employed a classification method 
based on the CNN of Zea mays L. (Crop), narrow-leaf weeds (NLW), and broadleaf 
weeds (BLW). One method used for extracting regions of interest (ROI) is 
connected component analysis (CCA). The accuracy of the CNN-based approach is 
an astounding 97% [41]. Dogra et al. [51] suggested a CNN-VGG19 model with a 
transfer learning-based method for the precise identification and classification of 
rice leaf diseases.  The accuracy is 93.0% in the deployment of the dataset of rice 
leaf disease and F1-score, with 89.9%, 94.7%, 92.4%, and 90.5%, respectively [51]. 
Tarek et al. [54] utilized standard pre-trained CNN architectures, such as AlexNet. 
Using ten datasets that represented various plant species, they developed an SVM 
classifier. The suggested model's average accuracy across all datasets is stated as 
93.84, while AlexNet, GoogleNet, and SVM's respective averages are 85.49, 87.89, 
and 87.04, respectively [54]. Bharadwaj et al. [53] utilized a convolutional neural 
network (CNN) to classify plant species using image data. They made use of a 
dataset that had 10,000 images of plants. The CNN model performed with 93% 
accuracy [53]. Nagasubramanian et al. [45] introduced a novel approach using a 3D 
deep convolutional neural network (DCNN) designed to process hyperspectral 
data on a charcoal rot disease affecting soybean crops.3D DCNN has a 95.73% 
classification accuracy and an F1 score of 0.87 for infected classes [45]. Devarajan 
et al [52] suggested a two-stage, end-to-end smart agriculture system built on DRL. 
the ACO-enabled DQN (MACO-DQN) model in the first step to offload tasks like fire 
detection, pest detection, crop growth monitoring, irrigation scheduling, soil 
monitoring, climate monitoring, field monitoring, etc. In the second step, Devarajan 
et al. [52] suggested the RL-DQN (DRL-based DQN) model for task activity 
monitoring and prediction in agriculture. The proposed performance results were 
98.5% precision, 99.1% recall, 98.1% F-measure, and 98.5% accuracy [52]. 
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Punitha et al. [50] utilized an Automated Climate Prediction for Smart Agriculture 
developed   a Pelican Optimization-based Hybrid Deep Belief Network (ACP-
POHDBN). The approach was used in three steps. The first step was to convert the 
meteorological data into a standard format using the min-max normalization 
procedure. As a second step to forecast weather conditions, Punitha et al [50] used 
the Deep Belief Network (DBN) model to pre-process data.  In the last step, Punitha 
et al. [50] applied the POA-based hyper parameter tuning technique to the DBN 
method's hyper parameters. The model performed had an accuracy of 95.03%, a 
sensitivity of 95.03%, a specificity of 95.03%, and an F-score of 95.03% [50]. 
Burhan et al. [48] applied five different deep learning models, namely Vgg16, 
Vgg19, ResNet50, ResNet50V2, and ResNet101V2.The rice field data set, which has 
been divided into four classes—Hispa, Healthy, Brown Spot, and Leaf Blast.  The 
ResNet50 model demonstrated an accuracy of 75.0, while the ResNet101V2 model 
demonstrated an accuracy of 86.799 [48].  Abdalla et al. [47] suggested a method 
for classifying oilseed rape into nine nutrient status classes using a combination of 
long short-term memory (LSTM) and convolutional neural networks (CNNs). The 
Inceptionv3-LSTM obtained an accuracy of 95%, and the dataset 2017/2018 cross 
obtained an accuracy of 92%. [47]. Espejo-Garcia et al. [46] fine-tuned neural 
networks pre-trained on agricultural datasets instead of ImageNet. Some 
architectures, such as Xception and Inception-Resnet, presented an improvement 
of 0.51%, 1.89%, and 13.67% in the number of epochs reduced [46]. 

 
C. IoT in Agriculture 

The Internet of Things (IoT) is the result of the rapid development of 5G 
infrastructures and IoT sensors into robust technologies. Although IoT is still in its 
infancy, the applications and trends it encompasses are reshaping the future with 
enormous business potential [11]. In general, the IoT system provides data flows 
and is further utilized to execute automatic image analysis, data prediction, data 
integration, data interpretation, etc. [12]. The Internet of Things (IoT) has enabled 
better and more effective farming operations, which has revolutionized several 
industries, including agriculture [13]. These technologies enable farmers to make 
data-driven decisions for optimal agricultural operations through the use of 
networked devices, sensors, and systems that gather, transmit, and analyze data. 
IOT platforms and devices are part of an expanding ecosystem that seeks to 
revolutionize agriculture by facilitating data-driven decision-making and 
enhancing productivity and sustainability in agricultural methods. Better resource 
management, lower expenses, and increased production in agriculture can result 
from the integration of these technologies [14].  The integration of IoT for better 
user outcomes in agriculture has been shown in figure 1 
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Figure 1. Use integration of IoT in Precision agriculture in [11] 

 
 
3.1 Sensor Networks Types  
 
The sensors are an essential component of the data collection system, which 

works with an intelligent controller to transfer the data the sensors collect to the 
data storage location. To detect physical quantities and translate them into an 
electrical signal that the controller can comprehend [15]. The following is a list of 
the most frequently utilized precision agriculture sensors: 

• Temperature 
As the most widely used sensor in the Internet of Things, temperature 

sensors monitor changes in both soil and ambient air temperatures. Crops depend 
on the air's temperature, and excessive heat can ruin crops [16]. 

• Humidity 
The air's humidity is measured with this sensor. Too much moisture stunts 

the growth of plant leaves. Humidity measurement is therefore one of the crucial 
factors. The crop requires less watering when the air moisture content is greater 
than 50%. The agriculture system can incorporate these water-saving measures. 
Various humidity sensors exist, distinguished by their construction and 
operational mechanism [17]. 

• PH sensor 
The pH of the soil and nutrient shortages (fertilizers found in the ground) are 

measured using a pH sensor. This sensor detects the acidity and alkalinity of the 
soil, which can lead to leaf discoloration, crop or plant stunting, and poor plant 
health. When soil acidity and alkalinity are too high, the land becomes unusable for 
farming. A pH of less than 5.5 inhibits the growth of plants. The pH range of 5.5 to 
7.5 is optimal. Fertilizers alter the pH of the soil, which alters the quantities of 
nutrients in the soil. However, hydroponics also makes extensive use of pH sensors 
to continuously monitor the quality of the acidic or alkaline water [19]. 

• Light dependent resistor (LDR) sensor 
This sensor is used in greenhouses to enable sunshades to be lowered during 

periods of intense sunlight and opened early in the day, based on the amount of 
light available. In these cases, an LDR sensor is employed since the sapling stage of 
plant growth requires a specific amount of sunlight [20]. 

• Wind speed sensor 
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Wind speed sensor utilized for pesticide application, crop harvesting timing, 

and weather forecasting. The wind's direction and speed are detected by the wind 
speed sensor. The accuracy of the sensor is highly dependent on its location [21]. 

• Red, Green and Blue (RGB) camera 
This sensor is used to take photographs. They process data using algorithms 

based on the image and compare it to a final crop harvesting image in order to 
estimate crop harvesting time, monitor plant health, and provide security [22]. 

• Nitrogen, phosphorus and potassium (NPK) sensor 
The NPK sensor for soil aids in determining the concentrations of potassium 

(K), phosphorus (P), and nitrogen (N) in the soil. In addition to predicting soil 
fertility, these three are necessary for the best possible plant growth. It helps by 
informing the farmer when to apply fertilizers to the land in order to keep the 
soil's nutrients intact [23]. 

• Rainfall sensor 
Rain and rainfall totals are measured by this sensor hourly. With this sensor, 

farmers may be prepared by knowing when heavy rain is expected, as it might 
damage crops if the field becomes completely submerged in water. The advanced 
water and flood control system on the farm works with it. Water needed for 
irrigation can be saved by using this sensor, which is connected to the controller, 
to detect whether an irrigation schedule is in place [24]. 

• Hyperspectral camera 
A hyperspectral camera captures numerous images in the visible (400 nm to 

700 nm) and infrared (IR) bands of the electromagnetic spectrum. It makes it 
possible for specialized farmers to accurately track irrigation, crop productivity, 
and fields. A filter is used to process each image data set that a hyperspectral 
camera captures in order to concentrate light on a specific color or wavelength 
[25]. Based on the sensors used, following a careful examination, Table 1 presents 
an extensive summary of the literature about precision agriculture sensors and 
their deployment.  

 
Table 1. Sensors used in IoT Precision agriculture. 

Author Type of Sensors Highlights 

Placidi et al.  Sentek commercial Precision farming utilizing a low-cost Lora WAN-enabled soil moisture sensor 

Jani and Chaubey SMAIoT network Precision agricultural IOT is effective in gathering and evaluating real-time data from a 

variety of pricey sensors, automating processes. 

Almuhay et al. LoRaWAN network Long-Range Wide-Area For applications such as smart agriculture, networks are effective. 

The sensors' gadgets securely save each other's data. 

Ahmed, Shakeel Biosensors Agriculture can utilize biosensors to identify particular biological processes and enzymes in 

soil samples. 

Rajak et al. Acoustic Fruit harvesting, seed variety classification, pest monitoring, and detection 

Aggarwal et al. Airflow Assessing the structure, moisture content, and air permeability of soil in a stationary or 

mobile environment 

Rabak et al. Electrochemical  assess the pH and nutritional content of soil 
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Pathirana et al. Electromagnetic logging soil's organic composition, electrical conductivity, electromagnetic reactions, and 
leftover nitrates 

Wei et al Field programmable gate array 
(FAAA) based 

Monitoring the irrigation, humidity, and transpiration of plants in real time 

LeVoir et al Light detection and ranging 

(LIDAR) 

surveying the land, identifying the type of soil, creating 3D models of farms, tracking soil 

erosion and loss, and forecasting yield 

Alghazzawi et al Mass flow  monitoring yield using a combine harvester's grain flow as a basis 

Machleb et al Mechanical Mechanical resistance or compaction of the soil 

Matus et al. Optical  Organic matter in the soil, soil moisture, color, mineral content, composition, and so forth. 

Fruit maturation is monitored by optical sensors based on fluorescence. Combining 
microwave scattering and optical sensors to describe orchard canopies 

Zhang et al. Optoelectronic Sort different kinds of plants to find weeds in crops grown in large rows. 

Dhanaraju et al. Soft water level-based (SWLB)  utilized in catchments to describe the characteristics of hydrological processes (water level, 
water flow, and time-step acquisitions). 

Pyingkodi et al. Telematics  Evaluating farm and machine operating activities, travel routes, and locations 

Khan et al. Ultrasonic ranging  Monitoring the crop canopy, weed detection, object detection, spray distance measurement, 
uniform spray coverage, and tank monitoring. 

Ullo and Sinha Remote sensing Crop evaluation, modeling yield, yield date forecasting, mapping land cover and 

degradation, forecasting, and pest and plant identification. 

 
D. Optimizing Crop Yield With Deep Learning Algorithms 

Deep learning-based precision agriculture has the potential to revolutionize 
farming practices, boost productivity, reduce resource waste, and build more 
sustainable and fruitful agricultural systems [25]. But in order for technology to be 
extensively implemented on farms of all sizes, problems with accessibility, 
scalability, data quality, and model interpretability need to be fixed [26]. Deep 
learning steps in Optimizing Crop Yield shows in figure 2. 

 

 
Figure 2. Deep learning steps in Optimizing Crop Yield in [49] 

 
4.1 Deep learning models 
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Deep learning methods have transformed many facets of agriculture by 
providing creative answers to problems that farmers and the agricultural sector 
face [27]. Large datasets, strong computing capabilities, and neural network 
topologies are all used in these methods to maximize agricultural practices, 
enhance decision-making, and extract insightful information. We provide an 
overview of deep learning techniques and their applications in agriculture [28]. 

 
4.1.1 Convolutional Neural Networks (CNNs) 
 
Deep learning is utilized in agriculture a number of applications, including 

early crop disease identification, plant disease differentiation, weed detection to 
reduce the need for herbicides, and crop health assessment from drone or satellite 
photos [29]. Neural networks, particularly Convolutional Neural Networks (CNNs), 
have been essential in processing intricate data and identifying patterns in a 
variety of agricultural domains [30]. For applications like crop classification, yield 
calculation, and plant disease detection, CNNs are especially useful since they excel 
at processing visual data. Convolutional neural networks (CNNs) excel at analyzing 
images, making them invaluable for tasks like plant disease identification, weed 
detection, and crop monitoring using aerial imagery [31]. CNNs are able to identify 
pests and diseases by analyzing photographs of crops. CNNs able to recognize 
minor indicators of diseases or infestations by learning features and patterns from 
photos, which helps farmers take prompt action. CNNs are used to distinguish 
weeds from crops in photos, enabling focused weed management techniques that 
don't damage the primary crop [32]. This increases crop productivity while 
lowering the need for herbicides. These networks help with plant breeding and 
biodiversity monitoring by using photos to distinguish different plant species or 
types. CNNs analyze data gathered from drones or satellite imaging to track crop 
health, forecast yield, evaluate soil quality, and offer management insights for the 
entire farm. As a result, resource allocation is optimized, and areas for 
improvement are identified [33]. 

Neural networks forecast crop yields by evaluating past data and present 
environmental conditions, enabling farmers to allocate resources and make well-
informed decisions regarding planting, harvesting, and other agricultural practices 
[34]. Convolutional layers are used by CNNs to extract features in a hierarchical 
fashion. For example, in the field of disease detection, these layers pinpoint 
particular disease-related patterns, including leaf lesions or discoloration [35]. 
Agriculture frequently uses transfer learning using pre-trained CNN models (like 
VGG, ResNet, or Inception) trained on large datasets (like ImageNet). Using smaller 
agricultural datasets, researchers refine these models and use the learned features 
for targeted applications [36]. Using data augmentation methods like rotation, 
flipping, or scaling in conjunction with CNNs, limited labeled data can be addressed 
by artificially increasing the size of the training dataset, which enhances the 
generalization capabilities of the model [37]. CNNs may distinguish particular 
regions of interest within images, such as pinpointing disease-affected areas or 
locating individual plants in a field, by performing object localization and 
segmentation [38]. CNNs with OCR capabilities are useful in farm management 
because they can read and interpret text from images, which is useful for tasks like 
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labeling machinery or agricultural items [39]. The NNs Algorithms for IoT Based 
Crop Yield Optimization shown in figure 3. 

 

 
Figure 3. The NNs for IoT Based Crop Yield Optimization diagram in [54] 
 
4.1.2 Recurrent Neural Networks (RNNs) 
 
Deep learning models like Recurrent Neural Networks (RNNs) used to 

analyze historical data such as weather patterns, soil conditions, and crop growth 
stages to predict future yields [40]. Forecasting crop yields based on weather 
forecasts and environmental factors aids farmers in planning and decision-making 
[41]. One type of neural network that excels at representing sequential data is 
called a recurrent neural network (RNN)[42]. RNNs are used in agriculture for a 
variety of time-series data-related tasks, including crop production prediction, 
weather forecasting, modeling pest and disease outbreaks, and historical farming 
data analysis [43]. RNNs are capable of predicting future weather conditions by 
analyzing historical weather data. Planning farming operations such as planting, 
irrigation, and harvesting depends on accurate weather forecasts [44]. RNNs are 
capable of forecasting future crop yields by examining historical farming data, such 
as weather patterns, soil characteristics, and prior crop yields. With the use of this 
data, farmers are better able to choose crops, allocate resources, and develop 
marketing plans [45]. RNNs are capable of analyzing patterns in data, including 
temperature, humidity, and plant health indicators, that are associated with pest 
and disease outbreaks [46]. By taking preventative action, farmers can lessen crop 
loss and the need for excessive pesticide use by forecasting epidemics. RNNs are 
capable of modeling soil moisture content by using environmental parameters and 
historical data. This data helps to maintain soil health, optimize irrigation timing, 
and ensure effective water usage. RNNs are capable of analyzing time-series data 
on plant growth parameters that are gathered using imaging or sensor methods, 
such as biomass, leaf area, and height [47]. This helps detect stress conditions and 
track the stages of crop development. RNNs use progressive memory retention to 
handle sequential data [48]. They are appropriate for assessing time-dependent 
agricultural data because of their memory capacity, which allows them to take 
historical data into account when generating forecasts. A specific type of RNN 
called an LSTM can detect long-range relationships in sequential data because it 
has gates to regulate information flow [49]. Since long-term trends are important 
in agriculture, long-short term memory (LSTM) models are effective in learning 
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patterns over extended time periods [50]. Figure 4 shows the suggested RNN-
based IoT smart farm network architecture. 

 
  

 
Figure 4. The suggested RNN-based IoT smart farm network architecture in 

[53] 
 
RNN-based models offer predictive analytics to help stakeholders in 

agriculture, including farmers, make well-informed decisions [51-56]. These 
models improve decision-making processes, be it planting schedules, resource 
management, or risk mitigation [57-58]. RNNs provide a comprehensive view for 
improved agricultural management by integrating data from multiple sources, 
including historical records, satellite imagery, IoT sensor data, and environmental 
data [58-62]. Deep learning methods have drawn a lot of interest and 
demonstrated tremendous promise in a number of fields, including agriculture. In 
the framework of agricultural crop yield optimization using IOT-based intelligent 
decision-making [63-67]. 

 
E. Performance Comparison and Accuracy of Models 

Table 2 shows the comparative performance of the deep learning techniques 
for integration with IoT discussed in this review paper. We have included only 
deep learning models and presented the best accuracy found in the review paper 
in Table 2. 

 
Table 2. Performance Comparison and Accuracy of Model. 

Author Model Accuracy 

Sumathi et al. DNNR 96.7% 

Rani et al. LSTM RNN 96.437% 

Punitha et al. ACP-POHDBN 95.03% 

Dogra et al. Transformer model 91.41 

Devarajan et al. CNN-VGG19 93.0% 

Bharadwaj et al. CNN 90% 

Garibaldi-Márquez et al. CNN 97% 

Bhujel et al. ResNet20 99.69% 

Kaur et al. Hybrid CNN 98.7% 

Meng et al. CNN More than 94% 
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Sagan et al. 2D and 3D ResNet Nearly 90% 

Zheng et al. Deep SAR-Net 92.94% 

Adrian et al. 3D U-Net Overall 0.941 

Espejo-Garcia et al. Xception, Inception-Resnet, 

VGNets, MobileNet, DenseNet 

F1 Score, 99.29% 

Abdalla et al. CNN-LSTM 95% 

Burhan et al. VGG & ResNet 75.0% , 86.799% 

Kaya et al. AlexNet,VGG-16 with LSTM 99.11% 

 Nagasubramanian et al. DCNN 95.73% 

  
F. Conclusion 

Precision agriculture's application of deep learning and Internet of Things 
(IoT) technologies has shown enormous promise for transforming conventional 
farming methods. Through the utilizations’ of advanced algorithms and network 
connectivity, this collaborative effort has yielded notable improvements in 
agricultural operations' sustainability, productivity, and efficiency. Precision 
agriculture has benefited greatly from the confluence of IoT and deep learning 
technologies, which have improved farming methods' profitability, sustainability, 
and productivity. The agricultural industry will become more resilient, efficient, 
and sustainable as a result of embracing new technologies and conducting 
additional research and development. This will help to meet the increasing need 
for food production while reducing the negative effects on the environment. With 
deep learning and IoT in precision agriculture, we expect that this work will draw 
the interest of agricultural communities and encourage more pertinent research. 
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